
TEACHING SEMAPHORES USING . . . SEMAPHORES *

Robert Marmorstein
Longwood University

Ruffner 329
201 High Street

Farmville, VA 23909
(434)395-2185

marmorsteinrm@longwood.edu

ABSTRACT
The word “semaphore” describes both a structure used in computing to
manage concurrency and a signal used by trains and naval vessels to transmit
information and prevent collisions. In this paper, we present a series of
activities which help students build intuition about concurrency by managing
“railway semaphores” using an open source train simulation game.
The increasing importance of multi-core computers and computing clusters
makes concurrency an especially important topic in both operating systems
and systems programming courses. Students often struggle to understand
semaphores and concurrency problems. One reason for this is that these
subjects are often presented as abstract mathematical objects which are hard
to visualize. Using simulation to make these ideas more concrete can improve
understanding and increase engagement in the course.

INTRODUCTION
The ability to manage concurrency using semaphores is one of the most important

topics of an upper-level operating systems or systems programming course, but it can be
very difficult to teach. Concurrency problems, such as race conditions and deadlocks, are
abstract concepts that can be difficult for a student to visualize. They can arise in many
different situations from file locking to network communication.

* Copyright © 2015 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

117

JCSC 30, 3 (January 2015)

Concurrency problems have been a focus of upper-level systems programming and
operating systems classes since the early days of computer science[4]. They have become
increasingly important as multi-core computers have become standard, not just for
servers, but in consumer systems and embedded devices. Concurrency issues arise
whenever a multi-threaded program accesses a shared resource, such as a file or a
variable in global memory, or when a program can be interrupted to allow some other
code to run. This is especially common for high-performance web applications, but is
also important in graphical interface design, data storage, and other areas where threading
can improve performance or interactivity.

As Akimoto and Cheng[1] point out, teaching concurrency has some unique
challenges. Not only is the material particularly difficult for students, but the complexity
of the topic makes it difficult to develop projects which engage students and are
appropriate for a single semester course. This problem is further complicated by the fact
that concurrency problems which seem similar to students often have subtle differences
that require very different approaches to their solution. For example, the
producer/consumer problem and the readers/writers problem both have two agents which
communicate using a shared data structure, but the readers/writers problem typically
requires multiple mutual exclusion locks and significantly more sophisticated logic than
the producer/consumer problem. These difficulties have prompted several creative
approaches to introducing these topics.

Possibly the most common approach is to develop a programming language, library,
or framework which allows students to easily use semaphores and monitors in short
projects. This approach is used by Pascal-FC[4], BACI[5], and a custom programming
package[8] used at Trinity College. The Trinity package is particularly interesting in that
it provides specialized debugging and tracing tools that allow students to visualize both
threads and synchronization constructs. Many of these short projects involve simple
games. The author of [15] uses a similar technique to teach a related topic, interprocess
communication mechanisms, using two simple strategy games.

Slightly longer projects, which involve implementing a significant component of an
operating system, are also popular. In [7], the authors use a project which requires
students to implement large portions of an operating system in assembly language. Other
popular projects, such as NachOS[6], PintOS[14], and OS/161[9], allow students to use
higher-level languages to apply synchronization techniques to design of major O.S.
components.

A second approach is to provide tools for visualizing concurrent interactions in
multi-threaded C or Java programs. The authors of [2] and [3] take this approach. Both
of these tools provide the student with a graphical depiction of the execution of a group
of threads and provide single-stepping capability. This approach supports the use of
familiar languages in class projects so that the student does not need to learn new
language features to complete the activities. The authors of [10] combined this approach
with a project-driven curriculum. Their “Simple OS” project requires students to
implement significant parts of an operating system, but provides a visualization
framework that aids students in comprehending and debugging synchronization
constructs.

118

CCSC: Eastern Conference

Figure 1: Track between an oil well and a refinery

A third approach is to motivate concurrency learning through the use of single or
multi-player games. In [1], Akimoto and Cheng describe a graphical game they have
developed which uses interactive robots to illustrate concurrency principles.

In [11], Kolikant et al. present a particularly intriguing study of the reasons students
become confused in operating systems classes. Using anthropological theory, they found
that students frequently form a flawed mental model of the behavior of semaphores. They
suggest giving assignments that strongly reinforce the principles and behavior of
concurrency constructs before assignments that require the students to use them in
problem solving. They also emphasize the importance of assignments that build
comprehension over assignments that teach students to simply memorize usage patterns.

These experiences strongly suggest that one of the best ways to introduce
concurrency is to use games and other interactive projects to give students a stronger
intuition about the semantics of semaphores. This paper presents a set of hands-on
activities which use an open source train simulation game, OpenTTD, to visually
represent concurrency problems. Each activity introduces one application of semaphores
and allows the students to interact with the system by placing “real” semaphores along
a train track carefully constructed to simulate a computing problem (such as a race
condition). The activities can be downloaded from my website at
http://marmorstein.org/~robert/trains.html and consist of an OpenTTD “scenario” file and
a series of “saved games” which serve as starting points for each activity. To use the
activities, each user must download the scenario file to their OpenTTD scenario folder
(in Linux, this is usually in the $HOME/.openttd/scenario/ folder).

The most common
concurrency problems discussed
in a systems class are race
conditions, deadlocks, and
starvation. Race conditions
occur when two threads can
simultaneously modify a shared
data structure. Shared access
can lead to problems where the
value of a set of operations
depends on the order of
execution of the threads rather
than the ordinary semantics of
the operation. Deadlock occurs
when two or more threads arrive at a situation in which each thread needs a resource held
by another thread in order to make progress and therefore no thread can complete and
release its resources. Starvation occurs when a set of threads prevents another thread
from getting a needed resource, usually by repeatedly accessing the resource the starved
thread needs in such a way that it can never complete.

119

JCSC 30, 3 (January 2015)

USING OPENTTD
OpenTTD is an open-source game based on Transport Tycoon Deluxe by

Microprose[12]. The game revolves around the construction of roads, railways, airports,
and shipping routes to transport goods from the industries that produce them to the
industries or cities that consume them. The construction of railways is an especially
important element of the game. To transport goods from one industry to another, the
player creates train stations at each endpoint and connects them to each other with track.

The player then adds a train depot to the track and uses the depot to create a train.
Once the player has configured the train’s destinations and way-points, it will navigate
the track, picking up goods and delivering them.

Each delivery earns the player a reward, which he can use to purchase additional
buildings, vehicles, or miles of track. The amount of the reward depends both on the
delivery time and on the distance traveled. A more efficiently organized track leads to
bigger rewards. A track in which deadlocks or starvation can occur can cause the player
to lose resources very quickly. Figure 1 shows an example train track which connects the
oil wells at the top right of the screen shot to the refinery at the bottom left. The building
above the middle of the track is a depot which can create and service trains.

Tracks can contain many branches, loops, or terminals. To build a profitable rail
empire, the player has to carefully arrange his tracks to maximize efficiency. In order to
avoid collisions and deadlocks, the player can place signals along the track. There are
two types of signals[13] in the game: block signals prevent a train from entering a section
of track which is already occupied by another train, while path signals allow multiple
trains to enter the same section of track, but only if both trains can reserve a safe path all
the way through the section. Signals can be used to force trains to move in one direction
around a circular track, to prevent multiple trains from accessing the same block of track
at the same time, or to prevent collisions at intersections of track.

Signals and tracks can also be removed using the “bulldozer” tool. To correct an
error in the track, the player first selects the tool used to create the track or signal, clicks
on the bulldozer icon, and then clicks on the game object to be removed.

Creating safe OpenTTD tracks is very similar to creating thread-safe code. In both
cases, the user manages a shared resource through the use of synchronization constructs.
In both cases, an incorrect solution can lead either to a collision or a deadlock. In the
train simulation, we address these problems using block and path signals. In
programming, we typically use semaphores., which we define to be an integer valued data
structure that provides the atomic operations “wait” and “signal”. The “wait” operation
decrements the semaphore, putting the current thread to sleep if the value becomes
negative. The “signal” operation increments the semaphore, waking a sleeping thread if
one exists.

120

CCSC: Eastern Conference

Figure 2: Trains collide in a critical section

Figure 3: A three-way deadlock

RACE CONDITIONS
A race condition occurs when two threads write to a shared variable concurrently.

When this happens, the value of the variable can depend on the order in which the threads
execute. A block of code in which a race condition can occur is called a critical section.
Unsynchronized access to a critical section can lead to incorrect program behavior (and
sometimes even cause a crash), but
might not manifest in any easily
detectable way. The problem of
preventing simultaneous access to a
critical section is called “mutual
exclusion”.

In OpenTTD, race conditions occur
when two trains share the same section
of track. This section of track represents
the “critical section”. Often, nothing
untoward will occur when this happens,
especially if one train is following
another. But if one train is slightly
faster than the other or if the trains
travel in opposite directions,
simultaneous access can lead to a crash.

Activity one presents students with a scenario in which three trains share a critical
section and asks them to use “block signals” as semaphores to prevent the trains from
crashing. When the student loads the scenario and unchecks the pause button, the top two
trains narrowly miss each other, which demonstrates both the danger of a race condition
and that critical section violations do not always produce a detectable error. If the
simulation continues to run for a few seconds, one of the trains will continue around the
track and collide with the third train as shown in Figure 2. Students can prevent this
problem by using block signals to protect the areas of the track which are shared by more
than one train.

Simulating a race condition in
OpenTTD is actually fairly difficult
because the game AI will keep a train
from leaving a station if it can’t find a
safe path to its first way point. To
overcome this, we created a scenario in
which the trains have already left the
station and are already in a critical
section. To do this, we deleted a
section of track between the first train
and the station. This allowed the
second train to leave the station. We
then restored the deleted track, which
created a state in which both trains
were in motion inside the critical

121

JCSC 30, 3 (January 2015)

Figure 4: A train starves in the station

section. Another approach might be to “flip” the activity, by setting up a thread-safe
scenario and having the students remove signals to create the race condition.

DEADLOCKS
While semaphores are great for preventing race conditions, overzealous application

can lead to another problem: deadlock. If a group of threads each hold a semaphore
needed by the one of the other threads in the group, they can get stuck, causing the
program to freeze.

Activity two presents students with a situation in which three trains are deadlocked
at an intersection. Figure 3 shows the initial scenario. The first train is blocked by the
second train. The second train is blocked by the third train. The third train is blocked by
the first train.

To resolve this situation, the student has to back all the trains out of the intersection
and then figure out which semaphores to remove (using the bulldozer tool) to solve the
deadlock but preserve mutual exclusion of the critical section. One simple solution to the
problem is to remove all the “internal” semaphores – the signals on the parts of the track
which form a triangle – but leave the “external” semaphores which surround the triangle.
This will force all the trains but one to stop outside the triangle in places which do not
block the track. The first train to arrive will “get the semaphore” and proceed through the
critical section. Once it has passed beyond the area of intersection, the other trains will
proceed in order.

STARVATION
Even when a system is not deadlocked, it is possible for a thread to become blocked

for long periods of time (or even forever) while other threads take turns monopolizing a
resource it needs. This is called starvation.

Similarly, an OpenTTD train can experience starvation if a section of track which
it needs access to passes back and forth between other, longer trains. This happens most
often when trains can reserve huge blocks of track for long periods of time. Splitting the
track up into smaller pieces usually solves this problem.

The third activity gives students a scenario in which one train starves while two
other trains occupy the track it needs to escape from the depot. The student can solve this
problem by splitting the track into
smaller pieces that allow the third train
time to “capture” enough track to
escape.

Figure 4 shows the starved train
stuck in the Aberdinghead station while
another train is using the track in front
of the station. If the player waits long
enough, the blocking trains will
eventually break down or accumulate

122

CCSC: Eastern Conference

enough of a delay from waiting at signals that the trapped train can acquire the track. In
the meantime, however, the train consumes resources, but cannot leave the station.

To solve this problem, the student can break the track up into smaller segments.
This will allow the trapped train to acquire the section of track immediately in front of
the station whenever both of the trapping trains are in other segments. However, this
solution has limited scalability – as the number of trains increases, the track becomes
more and more crowded. Eventually, no subdivision of the track will be sufficient to
prevent starvation, because the subdivisions will have to be so small that trains no longer
fit into a single section of track. This problem, in turn, can be addressed by extending the
track.

CONCLUSION
These projects are designed to supplement existing material in a course. It takes

most students a little less than an hour to work through all three activities, which fits
nicely into a 50-minute laboratory session.

We used these activities in an upper-level operating systems class at Longwood
University, a small public liberal arts college. The assignment consisted of three broad
stages. In the first stage, we introduced students to the OpenTTD user interface and gave
them an overview of the relevant features of the game. This took about half of the class
period. In the second stage, the students completed the three activities and experimented
with the signal system. This discovery stage took most of the remaining time. In the
third stage, students reflected on the activity by answering a set of questions about the
project. For most students, this took only a few minutes.

Here are a few sample questions appropriate for the reflection section:
1. In order to prevent a race between two trains, you added signals to your track. Are

there any drawbacks to adding signals? Can there be too many signals on the track?
2. At the end of the project, you should have a working train system, but if you pay

close attention, you’ll notice that the wood train spends a lot of time waiting.
Experiment with adding and removing signals to see if you can make this system
more efficient. What solutions did you find?

3. Suppose a multi-threaded program contains a shared data structure. If two threads
try to write to the data structure simultaneously, a race condition can occur in which
one thread overwrites the value of the other thread. Explain how this relates to what
you did in your lab.
All of the students completed the assignment successfully. Students were very

receptive to the activity and we received lots of positive feedback about how well the
project helped them understand synchronization. In fact, several of them continued
playing with the train scenario well after completing the checkpoints on which they were
graded. The exercise worked well as an introduction to threads and synchronization and
motivated further discussion of semaphore semantics and common semaphore patterns
in class.

123

JCSC 30, 3 (January 2015)

It is important to note that concurrency in OpenTTD has some subtle, but important
differences from concurrency in systems programming. Probably the most significant
difference is that race conditions have to be triggered by hand to circumvent the game’s
automatic crash protection. Another distinction is that, since all trains have the same
behavior and set of operations, it is difficult to model asymmetric problems such as the
“readers/writers” problem or a “producer/consumer” problem. Since OpenTTD is open
source, it might be possible to extend the game to address these issues. It might also be
possible to simulate these applications using more complicated tracks design (perhaps
designating trains moving in one direction of the track as “readers” and trains moving the
opposite direction as “writers”). However, since OpenTTD signals are essentially binary
semaphores and the game doesn’t have an equivalent to an integer-valued variable, it
would be difficult to illustrate the traditional solutions to these problems without
extensive modifications to the game engine.

ACKNOWLEDGEMENTS
OpenTTD was created by a large community of authors and artists. I am grateful

for their work and especially appreciative for the wonderful documentation on the
OpenTTD wiki[12,13]. The screenshots used in this paper are taken from OpenTTD
1.3.3. I am also grateful to Dr. Donald Blaheta who first suggested that this project might
be worth sharing.

WORK CITED
[1] Akimoto, N., de Cheng, J., An educational game for teaching and learning

concurrency, Proceedings of the 1st international conference on knowledge
economy and development of science and technology, 34-39, 2003.

[2] Bedy, M., Carr, S., Huang, X., Shene, C., A visualization system for
multithreaded programming, SIGCSE Bulletin, 32, (1), 1-5, 2000.

[3] Bi, Y., Beidler, J., A visual tool for teaching multithreading in Java, Journal of
Computing Sciences in Colleges, 22, (6), 156-163, 2007.

[4] Burns, A., Davies, G., Pascal-FC: A language for teaching concurrent
programming, SIGPLAN Notices, 23, (1), 58-66, 1988.

[5] Bynum, W. L., Camp. T., After you, Alfonse: a mutual exclusion toolkit,
SIGCSE Bulletin, 28, (1), 170-174, 1996.

[6] Christopher, W. A., Procter, S. J., Anderson, T.E., The Nachos instructional
operating system, Proceedings of the USENIX Winter Conference, 481-490,
1993.

[7] Donaldson, J. L., Teaching operating systems in a virtual machine environment,
SIGCSE Bulletin, 19, (1), 206-211, 1987.

[8] Higginbotham, C. W., Morelli, R., A system for teaching concurrent
programming, Proceedings of the Twenty-Second SIGCSE Technical Symposium
on Computer Science Education, 309-316, 1991.

124

CCSC: Eastern Conference

[9] Holland, D.A., Lim, A. T., Seltzer, M.I., A new instructional operating system,
Proceedings of the 33rd SIGCSE technical symposium on computer science
education, 111-115, 2002.

[10] Hoskey, A., Simple OS: A component-based operating system simulator in the
spirit of the little man, Journal of Computing Sciences in Colleges, 117-124,
2013

[11] Kolikant, Y. B., Ben-Ari, M., Pollack, S., The anthropology semaphores,
Proceedings of the 5th annual SIGCSE/SIGCUE ITiCSE conference on
innovation and technology in computer science education, 21-24, 2000.

[12] OpenTTD developers, OpenTTD Wiki, http://wiki.openttd.org, retrieved April
2014.

[13] OpenTTD developers, OpenTTD Wiki, http://wiki.openttd.org/signals/, retrieved
April 2014.

[14] Pfaff, B., Romano, A., Back, G., The pintos instructional operating system
kernel, Proceedings of the 40th ACM technical symposium on computer science
education, 453-457, 2009.

[15] Reese, D., Using multiplayer games to teach interprocess communication
mechanisms, SIGCSE Bulletin, 32, (4), 45-47, 2000.

125

