

Speculative Execution Attacks:
Technical Background of the Spectre and Meltdown

Vulnerabilities

Dr. Robert Marmorstein
(marmorsteinrm@longwood.edu)

June 5th, 2018

mailto:marmorsteinrm@longwood.edu

About Me

● Associate Professor of Computer Science at Longwood University

● BA in Mathematics and Computer Science from Washington & Lee

● PhD and MS in Computer Science from William & Mary

Timeline1

● June 2017: KAISER patches2 are introduced to Linux

November 2017: Linux community notices that something strange is
going on with KAISER patches

December 2017: Apple pushes updates to Mac OS X and iOS

January 2018: Google‘s Project Zero announces the Spectre and
Meltdown vulnerabilities

1. Jan Wildeboer, "How we got to #Spectre and #Meltdown", Jan 5. 2018
https://plus.google.com/+jwildeboer/posts/jj6a9JUaovP

2. Daniel Gruss, et. al, https://github.com/IAIK/KAISER

https://plus.google.com/+jwildeboer/posts/jj6a9JUaovP
https://github.com/IAIK/KAISER

Why do we care?
● Process Separation

– Passwords, PII, and other sensitive data can leak
– Compromised web applications can leak database

or file data

● Virtual Machines and Containers
– Share physical memory
– Provide isolation
– Spectre and Meltdown break the sandbox

Page Tables
● Map virtual pages to physical pages

paddr = PT[vpn]*PageSize + offset

● Stored per-process

● Typically stored as a hierarchy
– Linux uses a three-level page table

● Cached by the TLB (translation look-aside buffer)

● Contain permission bits that identify which processes can access each page.

Side Channel Attacks
● What is a side-channel attack?

– A means of circumventing software security protections using
physical properties of the hardware

– Power usage, temperature, timing, electromagnetic interference

● Example: Cracking RSA keys by timing how long the server
processes each candidate key1

1. Paul Kocher, "Timing Attacks on the Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems“, CRYPTO 96, p. 104-113, August 1996

Row Hammer
● Electromagnetic interference can cause DRAM cells to flip from

0s to 1s (or 1s to 0s)

● Certain memory access patterns can exploit this to allow the
contents of one row of cells to be modified by accessing
another

● Affects only DDR3 and newer, not older hardware

Row Hammer

Image © Raimond Spekking / CC BY-SA 4.0 (via Wikimedia Commons)

Row Hammer

1000 1001

1011 1010

1111 1011

....

Row Hammer

1000 0001

1011 1010

1111 1011

....

Pipelining
● Allows processor to execute multiple instructions at once

– Fetch, Decode, Execute, Memory, Writeback
– Modern processor (Skylake): 20-24 stages

mov $4, %eax
add %ebx, %esi

mov %ecx, 0xbffffff0
cmp %edx, %edi

jne 0x08001020

Speculative Execution
● Pipelining produces huge speedups if you can fetch the

correct set of instructions

● Instruction flow isn't always sequential:
– Loops and conditional statements can cause branching

● Branch prediction allows a processor to execute a set of
instructions and then revoke them if the branch is mispredicted

Flush+Reload
Flush+Reload:

1. Create an array of fixed size in process memory.

2. Flush the cache.
– clflush instruction

3. Leak information from the kernel by accessing exactly ONE
address of the array. This access is revoked, but only after it is
cached.

4. Time access to each element of the array. The fastest one
is probably the address we modified.

– rdtscp instruction

Flush+Reload

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name: ‘Tejas‘

 Age: 9

School: 27

Grade: B

Addr Value Valid

0

1

2

3

Cache

Unprotected Array

Protected Data Structure

Flush Caches

Flush+Reload

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 255 0 0 0 0 0 0

Name: ‘Tejas‘

 Age: 9

School: 27

Grade: B

Addr Value Valid

0

1

2

3

Cache

Unprotected Array

Protected Data Structure

Access
A[protected value]

Flush+Reload

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 255 0 0 0 0 0 0

Name: ‘Tejas‘

 Age: 9

School: 27

Grade: B

Addr Value Valid

0

1 9 255 X

2

3

Cache

Unprotected Array

Protected Data Structure

A[9] cached

Flush+Reload

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name: ‘Tejas‘

 Age: 9

School: 27

Grade: B

Addr Value Valid

0

1 9 255 X

2

3

Cache

Unprotected Array

Protected Data Structure

Memory access is revoked

Flush+Reload

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name: ‘Tejas‘

 Age: 9

School: 27

Grade: B

Addr Value Valid

0

1 9 0 X

2

3

Cache

Unprotected Array

Protected Data Structure

But stays in cache

Flush+Reload

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40ms 40ms 41ms 40ms 41ms 40ms 40ms 41ms 40ms 10ms 40ms 40ms 40ms 38ms 40ms 42ms

Addr Value Valid

0

1 9 0 X

2

3

Cache

Unprotected Array

Timing access to each array element reveals that
position 9 is cached.

Meltdown
● Meltdown:

– Access an out-of-bounds memory location

– This will generate a segmentation fault

– However, in the meantime, further computation can be used to trigger an in-
bounds memory access.

– This access will also be ultimately be discarded, but not before the access is
cached

– Use Flush+Reload to determine the out-of-bounds value

Meltdown
● For this to work:

– Must handle the segmentation fault so it doesn‘t crash the program:
● Catch it with a signal handler
● Run it in a child process

– Must access the information before the CPU zeros it out
● If address is zero, try again until the segfault terminates the process

– Must run on certain vulnerable Intel CPUs

Spectre
● Meltdown uses only out-of-order execution to read protected memory from userspace

● Other processors (ARM, AMD) are vulnerable to an attack which combines this with
branch misprediction

● Spectre adds branch prediction to make this work on other CPUs:

if (idx < bounds) {
val = target[idx];

A[val] = 255

}

● Need to trick the CPU into thinking it's going to be executed for idx > bounds

Spectre
● BTB – Branch Target Buffer

Uses current PC to predict next PC so that we can begin
fetching instructions from a branch

● BHB – Branch History Buffer
– Stores information about last 29 branches (determined

experimentally by Project Zero1)
– Used to predict if we will take a branch or not

1. Jann Horn, Reading Privileged Memory with a Side-channel, Project Zero Blog, Jan. 3, 2018

Spectre

0x08601060

0x08601060

0x08601060

0x08601060

0x08601060

0x08601060

0x08601060

0x08601060

0x08601060

0x08601060

0x08601060

0x08601060

0x08601060

0x08601060

0x08601060

0x08601060

0x08601060

0x08601060

0x08601060

0x08601060

0x08601060

0x08601060

0x08601060

0x08601060

0x08601060

0x08601060

0x08601060

0x08601060

0x08601060

0x08601060

Branch History Buffer

for (i=0; i < 30; ++i) {

 if (i != 30) {
 p = &A[i];
 } else {
 p = &A[target];
 }

if (p < end) {
 val = *p;
 }
}

Code

0x8601060

Spectre
● Does not segfault, but can only access in-process values

● Can be exploited in-kernel
– Existing vulnerability in kernel source
– eBPF JIT compiler (Variant 1)
– Browser Javascript JIT compilers

● Can cross VM boundaries (Variant 2)

1. Jann Horn, Reading Privileged Memory with a Side-channel, Project Zero Blog, Jan. 3, 2018

Solutions and Workarounds
● KPTI (Kernel Page Table Isolation)/KAISER

– Separates the user page table and kernel page table

– Access to the KPT only allowed while in Kernel Mode

– Comes with about a 5% performance penalty (more for some workloads)

– Particularly noticeable for PostgreSQL and Redis systems (up to 30% penalty)

● Compiler patches

● Browser patches

● New processor design

Questions?
● Dr. Robert Marmorstein

Longwood University

marmorsteinrm@longwood.edu
(434)395-2185

http://marmorstein.org/~robert/SwiftSpecTalk.pdf

mailto:marmorsteinrm@longwood.edu
http://marmorstein.org/~robert/SwiftSpecTalk.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

