
CMSC 160
Introduction to Algorithmic Design I

Spring 2022
http://marmorstein.org/~robert/ Spring2022 /cs160.html

Instructor: Robert Marmorstein (marmorsteinrm@longwood.edu)
Office Hours: 3:00 – 4:00pm MF, 12:00 – 3:00pm R (Rotunda 329) Phone: (434) 395-2185
Lecture: 12:00pm – 12:50pm MWF (Rotunda 354) Lab: 12:30pm – 1:45pm T (Rotunda G56)

I am also available by appointment. My schedule is posted near my office door. To make an appointment, please check
the schedule to see which times I am free, then contact me by e-mail and list some possible times we could meet. In
general, I need at least 24 hours of notice to schedule an appointment.

Communications Policy:
The best way to reach me is to use Slack. Slack is a chat utility with clients for mobile devices and desktop
computers. It will allow you to easily send me code snippets. Also, since I get notifications when a Slack message
comes in, I am more likely to reply to your message quickly than if you send me an e-mail. Slack also allows me to
easily set up a Zoom meeting (or Google Hangout) if we need to video chat.

When you send me a Slack message, I instantly get a notification on my computer, tablet, and phone. Typically, I
reply to Slack messages within 24 hours (often sooner) on weekdays and sometimes even on weekends. I am
much slower at replying to e-mail (since I do not get a notification and have to explicitly check it). Typically, you
can expect a reply to an e-mail within 48 hours (longer on weekends).

Slack is also a good way to communicate with other members of the class. You will be invited to a public
#cmsc-160 channel in which you can discuss the projects and other course topics with other students in the class.
Feel free to ask for and give help on this channel, but please stick to general answers rather than posting code.

You can also reach out to me by e-mail to marmorsteinrm@longwood.edu. However, please do not send me large
files by e-mail. They take up space toward my limited quota on the mail server and cause me all sorts of
headaches. E-mail messages containing large files will be deleted unread.

Asking for help
If you are asking for help with a project or homework problem, you can send me a direct message through Slack.
You should attach your code or your work to a Slack message so that I can see where you are at. You should do
this by using the “paperclip” icon to attach the file directly to your message or by copy/pasting the particular
snippet of code you are working on to the body of the message.

Please do NOT attach screenshots or pictures taken on your phone. They are hard to read and do not allow
me to compile your code without retyping it. Instead, attach the .cpp or .h file directly to the Slack message. You
will probably need to do this from a browser running inside your Linux virtual machine (or other Linux system).

One last suggestion: don’t “ask to ask”. I am delighted to answer questions about the projects and homework
assignments and you should feel free to ask questions at any time. Asking permission to ask a question wastes my time
and yours.

Course Description:
An introduction to problem solving and algorithmic design using an object-oriented programming language.
Topics include programming logic, iteration, functions, recursion, arrays, memory management, user-defined data
types, abstraction, and complexity analysis.

http://marmorstein.org/~robert/Fall2021/cs160.html
mailto:marmorsteinrm@longwood.edu
mailto:marmorsteinrm@longwood.edu
http://marmorstein.org/~robert/Fall2021/cs160.html
http://marmorstein.org/~robert/Fall2021/cs160.html

Prerequisites:
This course has no prerequisites. (Previous programming experience is helpful, but not required.)

Course Student Learning Outcomes:
By the end of the course, the successful student will be able to:

– Create software in C++ using common control structures, such as loops, functions, and if statements
– Use appropriate programming practices for ensuring that programs are robust, readable,

and efficient.
– Select appropriate data types for variables.

Course Structure and Student Expectations:
You should expect to spend roughly four and a half hours each week attending class. You should expect to
spend an additional nine to twelve hours each week working on projects, reading the textbook, preparing for
quizzes and exams, and completing the homework assignments. You may find that you spend significantly less
than nine hours on some of the easier topics at the beginning of the course and significantly more than twelve
hours on some of the harder projects in the middle and at the end of the course. Budget your time carefully so
that you are able to complete your work and earn the grade you want.

Textbook:
The textbook for this class is “C++20 for Lazy Programmers” by Will Briggs, Second Edition, Apress,
ISBN: 978-1-4842-6305-1. I highly recommend you use the print version of this book rather than the e-book. This
will allow you to bring your book to class and is also much more convenient for using it as a reference while
programming.

This book introduces many innovations that have been added to C++ in recent revisions of the language. It also
contains many examples and details that will go beyond the material covered in lecture. However, in class, I will
occasionally introduce a different, simpler, or more common way to do things. For this reason, it is important both
to come to class AND to read the textbook.

In addition to the textbook, we will make use of the free Unix Programmer's Manual (sometimes called the “man
pages”) and the TexInfo documentation (accessible through the “info” command on any Linux system).

These can be retrieved directly from the command line in any Linux system and provide information about the
standard programming libraries and the UNIX programming environment we will be using to develop software.
There are also online versions of these resources, but they may differ from the actual software installed on your
laptop, so it is better to learn to use the command line versions.

Linux Environment:
In order to complete the programming assignments for this course, you will need to use a Unix-based open-source
operating system such as Linux or BSD. You are responsible for getting a development environment set up and
working correctly on your system.

If you already have a working Linux laptop, you are in great shape. If not, you will need to install Linux on your
laptop or workstation. To do this, you have several options:

One option is to install Linux in a Virtual Machine such as Virtual Box. This is the option I recommend for most
students. Virtual Box can be downloaded for free from http://www.virtualbox.org/) and allows you to install a
complete Linux environment that can run in a separate window within your existing Windows or Macintosh
system. One drawback is that you will need a significant amount of disk space to store the large “hard drive
image” file. I recommend 50 to 60 Gb, and 20Gb is probably a bare minimum. Many modern systems use small
SSD drives that simply do not have enough space to do this.

http://www.virtualbox.org/

Another option is to install Linux directly onto your hard drive and set up your system in a “dual boot”
configuration that will let you reboot to switch operating systems. If you have extensive computer experience, this
is probably your best option. However, it requires skill and care. Installing an operating system and configuring the
boot environment is risky and you should carefully back up your files before installing Linux. Linux installers have
become much more user friendly, but if you are not careful it is possible to accidentally wipe your hard drive, deleting all
the files. As with the Virtual Machine option, dual-booting requires a significant amount of disk space, since you
will need to set up a second partition your hard drive large enough to hold a complete operating system.

A final option is to use a Live USB disk to run Linux without any modifications to your hard drive. This is a
relatively safe option and does not require additional hard drive space. In some circumstances, it can be the
easiest option. However, you will still need to configure your system’s UEFI or BIOS settings to allow you to boot
from the USB. In addition to adjusting the boot order, you will likely need to disable the “Secure Boot” setting and
may need to turn off “Intel Rapid Start”.

The main disadvantage to this approach is that USB drives are very slow (compared to a hard drive or SSD). They
are also not designed for heavy usage and can be prone to failures, which could cause you to lose some or all of
your work. If you use this option, I strongly recommend that you back your projects up onto another device at
regular intervals.

Macintosh Computers:
Unfortunately, if you have a Macintosh based on Apple’s new “M1” chip (“Apple Silicon”), none of these options
works very well. The “UTM” virtual machine (available at https://mac.getutm.app/) may partially work, but you
are likely to experience headaches and may not be able to complete all the projects this way. Your best bet may be
to borrow another computer from someone.

No matter which of these methods you choose, you will need to select a Linux distribution to install and follow the
installation instructions to get it working. Almost any Linux distribution will work for this class, but if you have
never used Linux before, it is probably best to start with something straightforward like Linux Mint:
https://linuxmint.com/

The project handouts are geared largely toward Debian-based distributions like Mint and Ubuntu, but as long as
you use a version of Linux or FreeBSD capable of running the course software, you are welcome to select a
different distribution.

Course Requirements and Major Assignments:
Your grade will depend largely on completion of programming projects, which will comprise 50% of your grade.
The remainder of your grade will come from homework assignments and quizzes (30%), the final exam(15%), and
participation(5%).

Reading
It is important that you keep up with readings from the textbook. While the reading itself isn’t graded, there
is material in the textbook that enhances and extends what we cover in lecture. It is important that you
master these details in order to be prepared for the homework assignments and (pop) quizzes. Reading
assignments for each week are listed on the tentative course schedule (see below). I will expect you to
have read the chapter for each week by the Monday of the following week.

Projects
This is a heavily project-driven course. There will be roughly four significant programming projects (and one
“warmup” project) which will constitute the majority of your course grade. For due dates, see the tentative course
schedule below.

https://linuxmint.com/
https://mac.getutm.app/

Final Exam
The final exam for this class will be a comprehensive final covering topics from the beginning to the end of the
course. It will consist largely of “coding problems” where I give you a short programming task and you give me
C++ code that accomplishes that task. However, the exam may also contain short answer, matching, fill in the
blank, vocabulary, or even essay questions.

Homework and Quizzes
In addition to projects and the final exam, you will be graded on homework assignments and quizzes. Many of the
homework assignments will be in the form of “drills” – worksheets with several similar problems that will help you
practice particular programming skills until you are proficient at them. In addition, there will be a test review
packet for the final exam that will be worth a significant percentage of the homework grade.
Quizzes will be given in class as unannounced pop quizzes. It is important to keep up with the weekly readings
(see tentative course schedule below) so that you are prepared for the quizzes. If you miss class due to an
excused absence I will allow you to make up the quiz if you contact me within twelve hours of the absence to
explain why you had to miss class.

Late Work and Grading Policy:
Late work will not be accepted unless you have a serious medical or family emergency which prevents you from
completing the assignment on time. In such cases, you do not need a doctor's note, but you must send me e-mail
within twelve hours of the assignment due date to explain your circumstances and to make arrangements for the
work to be completed. However, see the section on slip days, below.

Slip Days:
You will be allocated a fixed number of slip days at the start of the semester. You may use your slip days to extend
the due date of one or more programming projects. You can use all of your slip days on one assignment or you
may use them over multiple assignments. Slip days are calculated from the minute the assignment is due until
you turn it in and are rounded up to the nearest integer value. That means that if you turn an assignment in 24
hours and 1 minute late, you will use up two slip days. The slip day clock runs over weekends and holidays. If a lab
is due on Friday and you turn it in on Monday, you will have used three slip days, not one. Slip days cannot be
shared, traded, bought, or sold, but can occasionally be earned by participation in relevant campus activities I
select.

Grading Scale:
100-91: A 90: A-

89: B+ 88-81: B 80: B-
79: C+ 78-71: C 70: C-
69: D+ 68-64: D
63 or lower: F (There is no grade of D- in this course. Anything below a 64% is failing.)

Attendance:
In general, I expect you to attend class unless you are sick or engaged in an approved extracurricular activity.
Please do NOT come to class if you are sick. Instead, contact me within 12 hours of the absence to report your
illness and make arrangements for completing any missed work. You should also check the course web site for
announcements, new assignments, and other important updates. It is your responsibility to make up any missed
work and get notes on any material you have missed.

In general, I will not allow students to “stream in” when they are sick or must otherwise miss class, unless they are
officially quarantined by the university. Setting up a stream requires me to change how I prepare the lecture and it
takes an enormous amount of time to modify my materials to be suitable for that format. However, if you are
officially quarantined by the university, I will try to find a way to stream my lecture. To request this
accommodation, you MUST contact me at least 48 hours in advance to make arrangements.

I will rely primarily on your honor for enforcement of the attendance policy. However, I will keep a record of your
attendance as required by Longwood policy. In accordance with that policy, I may (at my discretion) penalize you
for missing more than 10% of scheduled class time (about 5 class sessions) to unexcused absences. If you miss
25% or more of scheduled class meetings (about 14 sessions), you will automatically fail this course.

Honor Code Statement:
I take the honor code very seriously. Any infractions of the honor code will be dealt with harshly. In addition to
any penalties imposed by the Honor Board, any student convicted of an honor offense in this class will
automatically receive a final course grade of F. You should consider all work in this class to be pledged work.
However, I view the honor code primarily as a tool – by establishing clear guidelines for which behavior is
admissible in this class, the honor code allows you to properly take advantage of external resources without fear of
violating the rules of the course.

Most academic dishonesty falls into two categories:
Plagiarism (Using someone’s work or ideas without giving them proper credit)
Cheating (Obtaining an unfair advantage by violating course policy)

Since different professors and even different classes from the same professor may have different rules, it is vitally
important that you carefully read this policy and know what is and is not permitted in this particular course.

Here are the rules I expect you to follow:

1. Exams and quizzes are to be completed entirely on your own. You SHOULD NOT use any resources (such as
books, web sites, homework assignments) not explicitly permitted at the time of the exam. You should not discuss
these assignments with anyone but the course instructor.

2. You MAY discuss homework problems and lab projects with other students subject to these restrictions:

A. Your work should be your own original solution to the assigned problem.

The work you submit should, in general, be either your own original work or modifications of
material which I have provided. You MAY assist other students or get assistance with simple
problems like syntax errors, but you MAY NOT copy large blocks of code from each other.

A good guideline of what "large" means is that changes that involve one or two lines of code are usually
okay, but copying more than three complete statements is usually too much.

Also, only turn in work which YOU have typed or written.

You should never turn in anything which someone else has typed or written as if it were your own.

B. You MAY NOT copy code electronically from other students or online resources

This doesn't mean you can't look online for help with a project. It just means that you shouldn't copy/paste
or download code and turn it in as your own. You must re-type any code you find. You should also not be
using large blocks of code from the Internet (again, the three line limit is a good rule of thumb), unless
otherwise instructed by the professor.

You may not share code with other students using flash drives, cell phones, e-mail, web sites, floppy disks,
CDs, or any other electronic storage or communication device. You MAY print out copies of your code for
your personal use, but should not share code listings with other students.

3. You must give proper attribution.

Whenever you receive help or use an online resource, you should comment your code to give proper credit.
A simple comment like “/* based on http://codewarrior.com */” is fine. This comment should go directly
above or directly after the place that you used the resource or received help to make it clear which parts of
your program are not entirely original.

4. You are responsible for securing your code.

Helping other students to cheat is also cheating. Furthermore, it is your responsibility to make sure that
other students do not use your work to cheat. Be careful with who you allow to access your computer or
account. Report any missing files, flash drives, or other devices that contain your work to me promptly.

Campus Policies:
This class complies with campus policies on wearing of face masks, intellectual property, disability
accommodations, mental health, and reporting of crimes and sexual misconduct. For more information, see
http://www.longwood.edu/academicaffairs/syllabus-statements/.

Food and Drink:
You MAY bring non-alcoholic beverages, including soft drinks, to class. However, please DO NOT eat in class (it
distracts me and the other students). Violations of this policy will be considered an unexcused absence. I grant
exceptions to this rule for students who must otherwise forgo lunch or have medical needs that require them to
eat in class. If you feel that you need such an exception, you must make arrangements with me in advance (that is,
before bringing food to class).

Cell Phones and Laptops:
Cell phones, music players, and laptops are to be turned off and put away during class, except as needed for the
lab sessions, online streaming, or as directed by the professor. Violations of this policy will be considered an
unexcused absence.

Tentative Course Schedule:
Jan. 12 – 14 Introduction: C++ Development in a UNIX environment

Algorithms and Pseudocode
Programs, Program Structure, Comments
Compiling Programs, Editing Programs with Vim
Read Chapter 1

Jan. 17 Martin Luther King Jr. Day, NO CLASS

Jan. 18 Warmup Project: Writing C++ Programs in Linux using Vim (Due Jan. 24 by 11:59:59pm)

Jan. 19 – 21 Using SSDL
Literal Types: Floating Point Numbers, Integers, Strings, and Characters
Binary and Hexadecimal
Named constants
Functions: sqrt, pow
Colors, Text, Fonts, Images, and Sound
Read Chapter 2 and Skim Appendices D and E

Jan. 20 LAST DAY TO ADD/DROP COURSES

http://www.longwood.edu/academicaffairs/syllabus-statements/
http://codewarrior.com/

Jan. 24 – 28 Variables and Constants, Arithmetic Operations, Order of Operations, Casting
Mouse Functions
Creating Functions, Software Requirements
Signed Binary Numbers
Read Chapter 3 and Skim Appendix H

Jan. 25 Lab 1: Using SDL (Due Jan 31st by 11:59:59pm)
Jan. 31 – Feb. 4 Conditional Statements

Chained If Statements and Nested If Statements
Compound Conditions (AND, OR, and NOT)
Switch statements

Strings and String Functions
Read Chapter 4

Feb. 1 Lab 2: Mouse Functions and Conditional Statements (Due Feb. 21st by 11:59:59pm)

Feb. 7 – 11 Loops, Increment, Decrement
Loop-and-a-half (break and continue)
Formatted I/O
Stream Input: Reading from the keyboard
Debugging

Read Chapters 5 and 25

Feb. 8 Lab: Catch up and Review

Feb. 14 – 18 Creating Functions
Return values and void functions

Software Development: Top-Down Design and Bottom-Up Design
Requirements Analysis and Testing
Read Chapters 6 and 7

Feb. 15 Lab 3: Console I/O (Due Feb. 28 by 11:59:59pm)

Feb. 21 – 25 Advanced Functions and Variable Scope
Debugging with gdb
Random numbers, Boolean Functions, Reference Parameters
Read Chapters 8 and 9 and Appendix G

Feb. 22 Lab: Catch up and Review

Feb. 28 – Mar. 4 Arrays and Enumerations
Passing arrays to functions
Multidimensional arrays
Read Chapter 10

Mar. 1 Lab 4: Arrays and String Formatting (Due Mar. 21 by 11:59:59pm)

Mar. 7 – 11 NO CLASS: Spring Break

Mar. 14 – 18 C++ Built-In Templates: Vectors, Sets, and Maps

Mar. 15 Lab: Catch up and Review

Mar. 21 – 25 Structures and Objects, Animation
Vectors of Objects
Read Chapters 11 and 12

Mar. 22 Lab 5: Objects and Animation (Due Apr. 11th by 11:59:59pm)

Mar. 30 Deadline to withdraw with a W

Apr. 4 – 8 Reading from Files
Writing to Files
Software Testing
Read Chapter 13

Apr. 5 Lab: Catch up and Review

Apr. 11 – 15 Classes, Constructors, Accessors, and Mutators
Public and Private Member Variables
Read Chapter 15

Apr. 12 Lab 6: Two Dimensional Arrays (Due Apr. 26th by 11:59:59pm)

Apr. 18 – 22 Objects of Vectors, Dynamic Arrays and Pointers
Searching Lists
Read Chapter 14

Apr. 19 NO CLASS: Symposium Day
Apr. 20 NO CLASS: Research Showcase

Apr. 25 – 29 Sorting Lists
Exam Review

Apr. 26 Lab: Catchup and Review

May. 5 Final Exam (Thursday, 3:00pm – 5:30pm, Rotunda 354)

